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A SUBMILLIMETER INTERFERENCE SPECTROMETER: 

CHARACTERISTICS,  PERFOFMINCE AND MEASUREMENTS 

K. H. Breeden, W. K. Rivers,  and A .  P. Sheppard 

ABS TRACT 

An interference  spectrometer   faci l i ty   for   use  in   the  f requency  region 

40 t o  3000 GHz (7.5 mm t o  100 p wavelength) i s  described. The .spectrometer 

reso lu t ion  i s  l i m i t e d   t o  no less   than  0.5 GHz over   this   range.   Resul ts   are  

given  of  measurements on water  vapor  absorption  in  the 500 t o  1500 GHz 

frequency band including a high  resolution  spectrum  from 900 t o  1000 GHz. 

The use  of  the  instrument t o  measure d ie lec t r ic   cons tan t  and loss tangent 

of mater ia l s  i s  described. Also included  are  discussions  of  sources,  

f i l t e r s  and detectors  used and  of  procedures  for  operating  this  instrument. 
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I. INTRODUCTION 

An interference  spectrometer  has  been  constructed  for  the  frequency 

region  40 t o  3000 GHz (7.5 mm t o  100 p, wavelength)  which  has  unusually  high 

reso lu t ion   for   the   reg ion .  The spectrometer  has  been  used t o  measure  absorp- 

t ion  in   gases ,   d ie lectr ic   constant   and loss tangent of so l id s ,  and t h e   f r e -  

quency response of f i l t e r s .  The development  of the  spectrometer   faci l i ty   has  

a l s o  produced  useful  contributions  to  mill imeter and  submillimeter component 

technology. 

The interference  modulation  principle  of  spectroscopy was f i rs t  proposed 

by  Michelson i n  1891 [2].  Technological improvements were necessary, however, 

before  widespread  use  could  be made, and t h e  modern  movement was not  begun 

u n t i l  around  1950  by P. F e l l g e t t  [3]. Popular  use  in  this  country  has  re- 

su l t ed   l a rge ly  from the  work and lucid  papers  of  John  Strong  and  his 

assoc ia tes  [4,5,6]. 

* 

In  an  interference  spectrometer,   the  radiation i s  divided  into two equal 

i n t e n s i t y  beams, and a var iable   path  delay i s  introduced  into one of t h e  beams. 

The two pa r t s   a r e   t hen  added together  and detected.  The detector  output as a 

funct ion of the  path  delay,   cal led  the  interferogram, i s  the   d i rec t   ou tput  of 

the  spectrometer. Because this   interferogram i s  the   longi tudina l   cor re la t ion  

function of the  electromagnetic  radi.ation, it fo l lows   tha t   the  power spectrum 

can  be  obtained  from it by Fourier  transformation, which in   t he   p re sen t  

instance i s  performed on a d i g i t a l  computer. 

The principal  advantage of the  interference  spectrometer i s  tha t   for   each  

spectral   e lement   the  integrat ion  t ime i s  the  f u l l  recording  time of t he   i n t e -  

ferogram so tha t   the   s igna l - to-noise   ra t ios   a re   h igh .   In   addi t ion ,   s igna l -  

t o -no i se   r a t io s  are increased  because beams of la rge   so l id   angle ,   tha t  i s  

beams with many s p a t i a l   d i f f r a c t i o n  modes o r  degrees of freedom, are  allowed. 

This is a strong  advantage in  the  submillimeter  region.  Other  useful  features 

include  relative  freedom from e f f e c t s  of  energy a t  out-of-band  frequencies 

and t h e   p o s s i b i l i t y  of  apodization or cont ro l   o f   the   spec t ra l  window function. 

The ins t rument   fac i l i ty   descr ibed   in   th i s   repor t   inc ludes   sources  and 

detectors  covering  the  range 40 t o  3000 GIIZ consisting  of neon  and  argon 

*Numbers in   square  brackets   refer   to   the  bibl iography.  



low-pressure  positive  column  discharge  tubes,  a  high-pressure  mercury  arc 

tube,  a 1350 K furnace,  and  waveguide  mounted  barretter  and  cryogenic 
germanium  bolometers.  Interferometer  optics are available for a unique 
wavefront-dividing  arrangement  as  well  as  the  conventional  Michelson  con- 

figuration.  Resonant  Mylar  beamsplitters  are  available  in  a  wide  range  of 

thicknesses.  Automatic  digital  readout  and  recording  equipment  are  used 

for efficient  handling of the  output  data for computer  processing. 

0 

Many  of  the  development  problems  and  design  of  the  instrument  and  its 

components  were  described  in  a  previous  technical  report [l]. The  present 

report  emphasizes  the  characteristics  and  capabilities of the  facility,  which 

resulted  from  the  development  program  sponsored  by  the  National  Aeronautics 

and  Space  Administration  under  Research  Grant NsG-258. Described  herein  are 

results  obtained  on  the  spectra of water  vapor  which  indicate  the  magnitude 

of  error  in  many  theoretical  calculations  performed  in  recent  years  and 

agree  with  others.  The use of  the  spectrometer  to  measure  dielectric  con- 
stant  and loss tangent  of  materials  is  treated  briefly.  Also  included  are 
comments  on  the  relative  efficiency  of  sources  and  on  the  cryogenic  bolometer 

used  with  the  spectrometer. An appendix  is  included  which  outlines  the 
fundamentals  for  operating  this  particular  instrument. 
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11. SOURCE  COMPARISON 

A primary  limitation  to  extending  operation  of  the  spectrometer  over  the 
very  wide  frequency  band  from 40 to 3000 GHz and to operating  with  both  a 

wavefront-dividing  interferometer  and  a  Michelson  arrangement  has  been  that 
of  finding  a  suitable  noise  source. A number  of  experiments  have  been  per- 

formed  to  find  the  best  available  source  for  each  frequency  band  and  interfer- 
ometer  arrangement,  and the  use of  black  photographic  paper  as  a  low-pass 
filter to eliminate  unwanted  energy  at  high  frequencies  has  been  explored. 

Preliminary  experiments  performed  in  the 40 to 80 GHz frequency  band 
utilized  a  wavefront-dividing  interferometer [l] which  fully  modulated  only 
energy  propagating  in  the  lowest  order  mode  plane  wave.  The  detector  used 
at  these  low  frequencies  was  an  evacuated  barretter  and  the  noise  source  most 
frequently  used  was  a  low-pressure  neon  positive  column  noise  source  with  an 
effective  temperature  in  the RG98/u waveguide  band  of 14,700° K, according 
to the  manufacturer. In an  attempt  to  verify  the  prediction  that  only  the 
lowest  order  plane  wave  would  be fully modulated  in  the  wavefront-dividing 
interferometer,  a  positive  column  neon  tube  was  mounted  in  a  circular  horn 
and  used  as  an  extended  area  multiple  mode  source.  This  source  configuration 
was  found  to  give  a  modulation  efficiency  less  than 10% as  compared  with 90% 
modulation  efficiency  observed  with  the  waveguide  mounted  noise  source.  The 
wavefront-dividing  interferometer  modulates  energy  in  spacial  modes  which 
have  even  symmetry  about  a  longitudinal-vertical  plane  out  of  phase  with 
energy  in  those  modes  with  odd- or anti-symmetry.  There  are  two  possible 
methods  to  overcome  the  reduction in modulation  efficiency  resulting  from 
having  waves  with  both  symmetries  propagating  in  the  optical  system.  One  is 
to  selectively  reject  the  modes  with  odd  symmetry.  Practically  this  can  only 
be  done  by  rejecting  all  modes  higher  in  order  than  the  fundamental  lowest 
order or plane  wave  mode.  Brief  experiments  with  Simple  mode  selecting 

* 

+E+ 

* PRD Electronics  holder  type 634 with PRD type 632 or MSI Electronics  type 
134 barretters. 
**Roger  White  Electron Devicestme GNW-18-v. 
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f i l t e r s   i n d i c a t e d   t h a t  such  devices would probably  have  prohibitively  high 

loss at the  higher  frequencies.  

The other  approach  to  improving  modulation  efficiency  in  experiments 

which necessitate  the  use  of  extended  area  sources  (such as radiometry) i s  t o  

replace  the  wavefront-dividing  interferometer  with a Michelson  beamsplitter. 

Such a beamspl i t ter  was constructed  of Mylar sheet and the  interferometer  

configuration was changed t o   t h e   c l a s s i c a l  Michelson  arrangement shown i n  

f igu res  1 and 2 .  With the  Wlar beamsplit ter,   modulation  efficiency  in  the 

40 t o  80 GHz region was 97% with  the waveguide  mounted  neon source  and  about 

95% with  the  extended  area  source. The 4 db measured  transmission loss  of  the 

Michelson  arrangement was a l so   s l i gh t ly   be t t e r   t han   t he  5 db loss of t he  

wavefront-dividing  arrangement.  Other  noise  sources  tested  in  the 40 t o  80 GHz 

frequency band with  the  Michelson  interferometer  arrangement were a 250-watt 

mercury  arc l m p  and a positive-column  argon  tube. The neon sources were  found 

t o  be  superior  to  other  sources  tested,  and it was found t h a t  impedance matching 

or emissivity was improved  by a few percent when the  neon tube was mounted i n  

waveguide so t h a t   v i r t u a l l y   a l l  of the  energy was propagated  in a s ingle  

s p a t i a l  mode. 

In extending  the  operating  frequency  to  submillimeter  wavelengths,  the 

evacuated  barret ter  was replaced  by a l iquid  helium  cooled germanium bolometer 

and again a number of noise  sources were tested.   Results  obtained  with  the 

mercury a r c  lamp and a 1350' K crucible   type oven  were be t t e r   t han   r e su l t s  from 

the   o ther   no ise   sources   t es ted   a t   f requencies  above 300 GHz. Thus f a r ,   t h e  

mercury arc  noise  source  has  been  used more frequent ly   than  the  crucible  

because  of  mechanical  and  heat  transfer  problems. It has  been  found,  however, 

t ha t   f l uc tua t ions   i n   t he   e f f ec t ive   t empera tu re   o f   t he  mercury  arc  source 

l i m i t  t he   ou tpu t   s igna l - to -no i se   r a t io   t o  a value  considerably  lower  than  the 

inherent   detector   noise   l imitat ion,  whereas the  thermal drift of   the  crucible  

i s  small and  slow. Thus, the  crucible   type oven should  provide a sub- 

s t a n t i a l l y   g r e a t e r  S/N than  that   observed  with  the mercury arc  source. 

* 

Spectra  taken  with  these  noise  sources  are shown i n   f i g u r e  3 over a 

frequency  range  from 200 t o  650 GHz and  under  normal  atmospheric  conditions. 

*Texas Instruments CLF-1 Cryoflask. 
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Figure 1. Schematic of Spectrometer and Block Diagram of Output  and Data Recording  Equipment. 



Figure 2. Photograph of the  Spectrometer i n  Vacuum  Chamber. 



I I I I I I I I 

250 -WATT  MERCURY  ARC  LAMP 
1350'K CRUCIBLE "- ROGER  WHITE  NOISE  SOURCE 

"" 

A i  = 50 GHZ 

I I I * \ . I  I I I 

200 300 400 500 600 700 800 900 

FREQUENCY (GHZ) 

Figure 3. Noise Source  Measurements. 



The  rapid loss in  power  below 300 GHz is  attributed to the  following  mecha- 
nisms:  multiple  reflections  in  the 0.0035" thick  mica  window  used  on  the 
detector  input  horn, loss of  power  carried  in  high-order  modes  cut  off  at 

low frequencies  in  the  detector  waveguide,  and  reduction  in  efficiency of 

the  resonant  beamsplitter. Loss of  power  above 500 GHz is due, in addition 
to  significant  water  vapor  absorption  near 550 GHz and loss in  beamsplitter 

efficiency,  to  insertion  of  a  filter  consisting  of  two  layers  of 0.006" thick 

black  photographic  paper. 

The  effects of black  photographic  paper  as  a  filter  are  seen  more 
* 

clearly  in  figures 4 and 5. Figure 4 shows  spectra  calculated  in  the 450 
to 1100 GHz frequency  band  from  data  recorded  with  a  mercury  arc  noise 
source  and  a 0.005" thick  Mylar  beamsplitter.  First  a  reference  interfero- 

gram  was  recorded.  Then  a  second  interferogram  was  recorded  with  a  single 

layer  of 0.006" thick  black  photographic  paper  placed  over  the  detector  horn 
and  a  third  interferogram  was  recorded  with  a  second  layer  of 0.006" thick 

black  photographic  paper  inserted  in  the  beam  at  a 45 angle  at  the  input 

prime  focus  of  the  spectrometer  optics.  Figure 5 shows  the  transmission/ 
absorption  of  single  sheets  of  black  photographic  paper  obtained by taking 
the  difference  in  db  of  the  above  two  filtered  spectra  and  the  reference 

spectrum. 

0 

- 
*The black  photographic  paper  referred to here  is  the  paper  used  to  wrap 
film  by  the  Kodak  Corporation,  Rochester,  New  York. 
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Figure 4. Transmission Spectra  for Single  Sheets of 0.006" Thick Black 
Photographic Paper. 
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Figure 5. Photographic  Paper  Absorption  Characteristics  Calculated from 
Spectra  Shown  in  Figure 4. 
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111. GASEOUS ABSORPTION 

A number  of  measurements  have  been  made in the 500 GHz to 1500 GHz fre- 
quency  band  to  demonstrate  potential  use  of  the  spectrometer  as  a  tool  for 
measuring  attenuation  and  bandwidth  parameters for gaseous  absorption  lines. 
The  experiments  discussed  in  this  section  were  chosen  for  two  reasons. One 
is to  show  that  sufficient  resolution  is  available to measure  the  charac- 
teristic  shape  of  certain  water  vapor  absorption  lines.  In  other  examples, 

it  is  demonstrated  that  attenuation  measurements  can  be  made  by  comparing 
spectra  calculated  from  interferograms  recorded  through  a  given  sample  and 
in  the  absence  of  the  sample. 

Figure 6 shows  a  high  resolution  spectrum  which  was  calculated  from  an 
interferogram  recorded  under  normal  room  atmospheric  conditions (50% humidity). 
The  contour  of  the  spectrum  indicates  that  over  the  effective  two-meter  path 
length  of  the  spectrometer  water  vapor  absorption  lines  can be seen  at 915, 
970, and 988 GHz. It  should  be  noted  that  these  frequencies  are  more  closely 
in  agreement  with  calculations  given by Yunker  and  Querfeld [7] than  with  the 
calculations  by  Ghosh  and  Edwards [8]. The 3.9 GHz resolution  used  in  this 
spectrum  was  selected  to  give an accurate  representation  of  the  actual  line 
shape  and  should  not  be  thought  of  as  maximum  resolution  for  the  spectrometer. 
Resolution,  over  the  normal  operating  frequency,  is  limited  to  about 0.5 GHz 

by maximum  mirror  travel  and  by  finite  aperture [g]. 
Spectra  calculated  from an interferogram  recorded  with  the  instrument 

evacuated  to  a few torr  and  a  reference  interferogram  recorded  at  normal  atmos- 
pheric  conditions  are  shown  in  figure 7. A n  absorption  plot  calculated by 
taking  the  difference  in  db  of  the  above  two  spectra  is  shown  in  figure 8. The 
water  vapor  absorption  lines as they  occur  at  normal  room  temperature,  pressure, 
and  humidity  with  a  two-meter  effective  path  length  are  seen  clearly  in  this 
figure  at 557, 753, 987, 1098-1113, 1161, 1213-27, and 1407 GHz. It  also 
appears  that  the  two  lines  at 641 GHz, the  three  lines  near 860 GHz and  the 
four  lines  from 1310-30 GHz are  visible. The 1320 GHz cluster  are  predicted 
by Ghosh  and  Edwards [8] to  be comparable  in  magnitude  to  the 550 GHz line 
and  this  is  seen  to  be  the  case  although  the  line  "skirts"  are  masked by 
the  more  intense  absorption  on  either  side.  Reference 8 predicts  eighteen 

11 
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Figure 6. High  Resolution  Spectrum with 0.005" Thick Beamsplitter and 
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Af = 30 GHz 

ATMOSPHERIC 
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Figure 7. Atmospheric  Attenuation  Spectra. 
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Absorption  Spectrum  Calculated from Figure 7. 
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lines  from l O O O - l 2 5 O  GHz. These  are  masked  by  the  very  intense  lines 
mentioned  above  and  by  the 30 GHz resolution  at  which  this  spectrum  was 
taken.  With  greater  resolution  the  absorption  lines  would  be  somewhat 
greater  in  magnitude  and  slightly  narrower  in  bandwidth  than  shown  in  figure 8. 
Sheppard [lo] calculated  the  absorption  curve  to 1000 GHz on  the  basis  of  a 
0.2 cm'l shape  factor  and  the  Van  Vleck-Weisskopf  equation.  The  agreement 

in  the  observed  values of attenuation  in  the  windows  near 600 and 680 GHz is 
very  close  to  that  calculated.  Shep-pard's  curve  Cid  not  consider  values of 
the  lower  rotational  quantum  number J > 6, hence  the  windows  observed  near 
825 and 9lO GHz are,  as  would  be  expected,  greater  than  calculated. It may 
be  noted  that  the 753 GHZ line  is  comparable in strength  to  the 557 GHz line 
as  calculated [8,10] rather  than  as  observed  by  Iaroslavski  and  Stanevich [ll]. 
It  is  not  exhected!  that  a  better  vacuum  would  cause  appreciable  change  in  the 
line  skirts or in  the  weaker  lines;  however,  the  peak  attenuation of strong 
lines is probably  several  decibels  greater  than  shown  in  figure 8. 



IV. THE SPECTROMETER AS AN INSTRUMENT FOR DETERMLNING 

PROPERTlES OF DIELECTRIC SOLIDS 

Very l i t t l e   d a t a   e x i s t  on t h e   r e l a t i v e   p e r m i t t i v i t y  or loss tangent of 

so l id   d i e l ec t r i c   ma te r i a l s  above the  frequency of 10 GHz. Waveguide and 

resonant   cavi t ies  become exceedingly  small  in  the  millimeter  wavelength 

region  and  are  not  frequently  used  in  the  sense  of  operating  in a s ingle  

dominant mode in  the  submillimeter  wavelength  region. Such measurements t h a t  

are   a t tempted  in   the  mil l imeter  wave reg ion   genera l ly   u t i l i ze   the   f ree-space  

techniques  described  by  Redheffer [12]. The r e l a t ive   d i e l ec t r i c   cons t an t  i s  

determined  by  inserting a large  area  sheet  of t h e  unknown material  in  between 

a transmitt ing  and  receiving  horn,  one of which can  be  displaced  along a C a l i -  

b r a t e d   s c a l e   p a r a l l e l   t o   t h e   p r i n c i p a l   a x i s  of the  horns.  For a monochromatic 

source  i l luminating a lossless d ie l ec t r i c   so l id   o f   r e l a t ive   pe rmi t t i v i ty ,  e , 
and thickness,  d,  a t  normal  incidence one may wr i te  

r 

where 6 represents   the  path  length  difference  obtained from the   ca l ibra ted  

s c a l e   f o r   t h e   a i r  gap  with  and  without  sample. 

The pos i t ion  of the  horns which gives   the same effect ive  path  length  with 

or  without  the sample i s  locatable  by a phase  comparison  of  the t e s t   t r a n s -  

mission  path  with a reference  path  in  a bridge.  This  interferometer method 

can a l s o  be  implemented in   the   submi l l imeter   reg ion   on ly   in   those   cases  where 

it i s  appropriate   to   use  broadband  radiat ion;   that  i s ,  dispers ion of t he  

d i e l e c t r i c  samples may reduce  the  accuracy  and  usefulness of t h i s  method. 

Another  technique makes use of the  resonant  properties  of a t h i ck  

d i e l e c t r i c   s h e e t   t o  measure  both  dielectric  constant and loss tangent. It i s  

wel l  known t h a t  a mater ia l   exact ly   an  integral   half-wavelength  thick,  i. e.  

where h i s  the  wavelength  in   the  mater ia l  and n i s  an  integer,  w i l l  t ransmit  m 
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t h e  maximum normal  incident  energy. For a mater ia l   wi th   d ie lec t r ic   cons tan t ,  8 r’ 

A O  

.& 
= -  , 

where L o  i s  the  freespace  wavelength.  Substituting (3) i n t o  (2)  y ie lds  

f o r   t h e  maximum transmission  condition. 

When this  resonance  technique i s  used  with  the  interference  spectrometer, 

there  i s  no d i f f i c u l t y   i n   i n s e r t i n g  a shee t   o f   d ie lec t r ic   in   the  beam, f o r  

exmple,  between the  source  chopper  and  the  succeeding  ell ipsoidal  reflector.  

A n  interferogram  can  be  recorded  with  and  without  the  sample,  and two nor- 

malized  spectra  can  be  obtained.  Taking  the  ratio  of  these two spectra  

r e s u l t s   i n  a graph   l ike   tha t  shown i n   f i g u r e  9. It may be  noted  that   there  

a re   four  maximum transmission  points on this  curve,   each  corresponding  to a 

par t icu lar   va lue  of the  integer   n .  The thickness  of  the sample  can  be  measured 

rapidly.  If one assumes tha t   the   mater ia l   under   t es t   has  a cons t an t   r e l a t ive  

permi t t iv i ty   to   the   neares t   t en th   over  a port ion of the  frequency  range of 

the   spec t ra ,  a s e r i e s  of equat ions  l ike (4)  can  be  writ ten  in which e i s  the  

unknown : 
r 

l o 1  2 

‘r=[ 2d ] 

. . . . . . . . . .  

where h 01’ A02’ Y hop are  the  wavelengths  corresponding t o  t h e  maxima 
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Figure 9 .  Power  Transmission  Characteristic of Low-Loss Dielectric  Material 
as  a  Function of Frequency. 



on a graph  l ike  f igure 9. It i s  a simple  matter  to  pick  the  unique  value  of 

n t h a t  w i l l  cause a constant  value  of e r  t o   r e s u l t  f o r  the  system  of  equations 

( 5 ) .  In  executing  such a technique,  care must be  exercised i n  t h e   t o t a l  

frequency  range  over which the  maxima extend. Very l i k e l y ,   t h r e e   t o   f i v e  

maxima should   suf f ice   to   g ive  a good p ic tu re   o f   t he   r e l a t ive   d i e l ec t r i c  

cons tan t   o f   the   mater ia l   in  a given  frequency  region. 

Some effort   has  been  spent on r e l a t ing   t he   f r ee - space   r e l a t ive   d i e l ec t r i c  

constant measurement spectra   to   determinat ion  of  sample loss tangent. The 

spectrum  taken  with  the  sample  in  the  path i s  of lower  intensi ty   than  the one 

taken  without  the  sample.  Redheffer [12] suggests   that   the   reduct ion i n  
amplitude  of  the  transmitted wave in   the  f ree   space  technique  can  be  used  for  

loss  tangent   calculat ions on cer ta in   mater ia l s .  The equa t ion   fo r   t h i s  

ca lcu la t ion  i s  

where t i s  the   vo l tage   t ransmiss ion   coef f ic ien t   ( in   th i s   case  a t  the  spectrum 

maxima) and b = 0.5 nn   tan  6 ,  where n i s  an  integer  as  defined  in  Equation 2 

and t a n  6 i s  t h e  unknown loss tangent.  The r e l a t ive   d i e l ec t r i c   cons t an t  e 

used  in  Equation 6 i s  determined f irst  consider ing  the  mater ia l   to   be  lossless .  

I t e r a t i o n  i s  then  used t o  r e f ine   t he   d i e l ec t r i c   cons t an t  and i n   t u r n   t h e  loss 

tangent.  For a sample of S tycas t   wi th   re la t ive   d ie lec t r ic   cons tan t  of 3.9 
the  t ransmission  coeff ic ients  changed on each  of  four maxima so tha t   t he  l o s s  

tangent was observed t o   c e n t e r  between 0.004 and 0.005 f o r   a l l   t h e   d a t a .  

r 

* 

Experimental ly ,   there   are   def ini te   l imitat ions  to   the  approach.  A t  t h i s  

reporting, it has  not  been  possible  to  obtain  consistent  differences  in  the 

spectra   with and  without  the sample when r e l a t ive   pe rmi t t i v i ty  i s  l e s s   t h a n  

about 3.5. However, t he  measurements  have  been  confined to sample thickness 

of one-half  inch or less .   Redheffer   points ,   out   di f f icul t ies   with  non-plane 

wavefronts  and  diffraction of t he  sample when using  free-space  techniques, 

and these  must  be e i t h e r  minimized or e lse   t aken   in to   account   in   the  

measurement procedure. 

*Emerson & Cuming, Inc . 
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A. OPERATING INSTRUCTIONS 

The  purpose  of  this  appendix  is  to  furnish  an  introduction  to  the  experi- 

mental  mechanics  of  Fourier  transform  spectroscopy. A discussion  of  rule-of- 

thumb  methods  for  selecting  parameters  such  as  traverse  speed,  recording  time, 

sampling  rate,  and  time  constant  is  presented  along  with a discussion  on 

spectrometer  alignment  and  beamsplitter  selection.  The  discussion  applies 

directly to the  Michelson  interferometer  arrangement  but  can be applied  to  the 

wavefront-dividing  arrangement  of  reference 1 by  considering  that  the  latter 

arrangement fully modulates  only enerm propagated  in  the  lowest  order  spacial 

mode  and  that mirror displacement  per  differential  path  length  change  for  the 
wavefront-dividing  arrangement  is  1es.s  than  for  the  Michelson  arrangement  by 

a  factor  of  two. 

A review  of  the  Fourier  transform  process  similar to  the  discussion  in 
reference 1, but  which  considers  the  apodizing  function  from  a  convolution 

point  of  view,  is  included  to  assist  the  reader  in  relating  the  mathematics 

of  this  process  to  the  more  common  mathematics  of  basic  network  theory  and  to 

help  relate  resolution  bandwidth  to  a  given  apodizing  function. 
As the  driven  mirror  shown  in  figure 1 is  displaced,  the  detector  response 

as  a  function, V(x),  of  path  delay,  x,  is  recorded.  This  function,  which  is 

called  the  interferogram,  is  symmetrical  in  the  path  delay.  The  power 

P(v), of  the  radiation  detected  can  be  obtained  from  the  interferogram 
Fourier  transform, 

m 

P(v) = J v(x)  cos ( 2rr x ") dx = F {V(x)]. 
-m 

cos 

spectrum, 

by  the 

(1) 

In practice, V(x)  is  recorded  over a  finite  differential  path  length, L, 
so that  the  function  actually  computed  is 

L m 

P,(V) = 2 v(x) cos ( 2-r x v 
J dx = J a,(x> ~ ( x )  cos ( 

& X V  
C 

0 -Q) 
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where t h e  symbol * denotes  convolution,  and A (v )  i s  given  by 1 

Al(v) = 2L 1 - 1  . 

This  function, A,(v), has  bandwidth  of  only A - 0.6 c/L, but  has  undesirable 

si1:elobes which a r e  on the  order of 25 per  cent  of  the main peak.  In  order 

t o  reduce  these  sidelobes,  the  function  a,(x)  can  be  replaced  by  the  function 

1 -  

9 (x < -L, x > 

so  t h a t  

has  increased  bandwidth, A c/L, but  sidelobes  are  reduced 

of  the  peak. 

(5)  

t o  about 6 per  cent 

In  a l l  of  the  examples  presented in   th i s   repor t ,   the   apodiz ing   func t ion  

given  by  Equation (4)  w a s  used, and the  numerical  integration  performed  by  the 

computer was 

r e s u l t i n g   i n  a resolution  bandwidth  of A c/L. I n  Equation (6), the  index m 

denotes  the data poin t  which occurs a t  the  zero  point  of the  interferogram, 

and 6 i s   t h e  increment i n  x. 

In  es tab l i sh ing   the   parameters   for  a par t icular   interferogram,  resolut ion 

bandwidth must be  considered f i rs t .  The degree  of d e t a i l   i n  a power spectrum 

i s  l imited  by  resolution  bandwidth  in a manner analogous to   t he   r i s e - t ime  

l imi ta t ions  of a low pass   f i l t e r .   Af te r   the   necessary   reso lu t ion  bandwidkh 

has  been  established,  the  corresponding mirror displacement, D, can  be 

calculated from A = c/L  and L = 2D. 
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The  minimum  total  recording  time, T, for  obtaining  data  for  a  power 
spectrum  with  a  given  resolution  and known maximum  frequency  is  limited  by 

the  maximum  recording  speed  of  the  tape  punch which is  presently  about  one 

sample  per  second,  and  the maximum total  recording  time is limited  by  the 

six-hour  hold  time  of  the  cryogenic  detector.  Another  factor  to  be  con- 

sidered  in  selecting  total  recording  time  for  an  interferogram  is  that  signal- 

to-noise  ratio  is  directly  proportional  to  the  square  root  of  this  parameter 

for  a  spectrum  of  given  resolution. It is,  therefore,  advisable to make  total 
recording  time  as  long  as  possible  within  acceptable  limits  whenever  signal- 

to-noise  ratio  is  to  be  marginal  for  an  experiment. 

After  establishing  values  for T and D, velocity  of  mirror  displacement 
is  found  from S = D/T, and  the  proper  gear  ratio  and  motor  speed  can  be 
selected. 

Sampling  theory  dictates  that  the  maximum  sampling  interval, ts, must  be 
no greater  than *(Am/S), where A m  is  the  wavelength  corresponding to the 

highest  frequency  of  interest  in  the  power  spectrum  to  be  calculated. In the 
past,  the  sampling  interval for a  given  interferogram  has  been  selected by 

simply  driving  the  instrument  through  the  first few cyclic  variations  at  the 

desired  mirror  displacement  velocity  and  picking  a  sampling  frequency  which 

would  give  about  ten  data  points  per  cycle;  that  is, ts = 0.1 A /S. This 
method  gives  a  sampling  frequency  which  adequately  describes  the  information 
and,  at  the  same  time,  provides  a  margin  of  safety  of  about a factor  of  five 
over  the  calculated  minimum  sampling  frequency  to  prevent  image  frequency 

overlap. 

m 

Two additional  considerations  in  selecting  an  optimum  sampling  frequency 
follow: 1) With  the  present  computer  program,  it  is  necessary  to  select  a 

data  point  as  the  zero  phase  difference  point  of  the  interferogram  rather  than 

interpolate  between  points,  thus  one's  ability to accurately  select  the  zero 

point  and  to  avoid  an  undesirable  baseline  shift  as  discussed  in  reference 13 
is limited  by  the  density  of  available  data  points. 2) Computer  time  and, 
hence,  cost  required  to  calculate  a  given  number of spectral  points  is  roughly 

proportional  to  the  number  of  data  points  in  the  interferogram. 

Detection  integrating  time  constant, T ,  must be  selected so that no 
appreciable  attenuation is seen  at  the  frequencies  of  interest,  while  higher 
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order  frequencies  are  adequately  suppressed  to  avoid  image  frequency  distor- 
tion. It can  be  shown [13] that  the  above  requirements  are  usually  satisfied 
if  one  selects T ts. This  rule-of-thumb  selection  has  been  used  in  virtually 
all  of  the  experj-ments  in  this  report. 

GlllMpLE : 

For the  interferogram  shown  in  figure 10, the  following  parameters 
were  selected: D = 3.86 cm, T = 5830 seconds,  t = 2.4 seconds, 
T = 1 second, Av 4 GHz. Note  the  slight  asymmetry  of  the  data 
points  about  the  central  maximum in  the  interferogram  in  figure 10. 

This  asymmetry  indicates an error  in  selection  of  the  zero  phase 
difference  point,  and  a  corresponding  base  line  shift  is  evidenced 
by the  negative  power  level  at  higher  frequencies  in  the  calculated 
power  spectrum  shown in  figure 11. The  appreciable loss in  power 
between 600 and 900 GHz  is  due  to  a  beamsplitter  null  as  discussed 
below. 

S 

Before  the  spectrometer  can  be  aligned,  an  adequate  noise  source  and 
detector  and  a  beamsplitter  must  be  selected. A 4 to 5 db  transmission loss 
will  be  experienced  when  the  instrument  is  properly  aligned, so a  source  and 
detector  which  will  give  a  minimum  signal-to-noise  ratio  of 15 db or more 
should  be  selected.  In  the  past,  the  Roger  White  neon  source  and  evacuated 
barretter  discussed on page 3 have  been  used  for  preliminary  alignment  in 
order to avoid  unnecessary  use  of  liquid  helium. It has  also  been  found  to 
be  somewhat  easier  to  align  the  instrument  first  at  the  longer  wavelengths 
rather  than  at  the  submillimeter  wavelengths  at  which  the  liquid  helium 
cooled  bolometer  is  most  sensitive. 

The  Michelson  arrangement  discussed  in  this  appendix  uses  a  Mylar  beam- 
splitter  similar  to  the  one  described  by  Richards [9]. Curves  shown  in 
figure 12 can  be  used  as  a  guide  in  selecting  the  beamsplitter  thickness  for 
a  given  frequency  band.  Plot  (a)  shows  the  beamsplitter  efficiency for a 
Mylar  sheet  of  arbitrary  thickness  and  plot  (b)  shows  the 3 db  and  first  null 
frequencies  as  a  function  of  beamsplitter  thickness. 

EXAMPLF: : 
For a 0.005’’ thick  beamsplitter,  the  pass  band  is  from 130 to 
620 GHz and  the  first null is at 750 M z .  Figure 11 illustrates 
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a power spectrum  recorded  with a 0.005'' th ick  beamspl i t ter .  

The dot ted   por t ion  of t h i s   p l o t  shows the  envelope of the 

spectrum i n   t h e  650 t o  875 GHz frequency band  which i s  

appreciably  a t tenuated  by  the  predicted  beamspl i t ter   nul l  

a t  750 GHz. 

After  a source and detector  and a beamsplit ter have  been  selected,  the 

instrument  can  be  aligned. One should first lay  out   the   instrument   (omit t ing 

the  source  optics) by  measuring the   d i s tance  between mirrors and the   des i red  

45O angles.  It i s  then   poss ib le   to  make use of t h e  known foca l   cha rac t e r i s t i c s  

of the  twelve  inch f : l  system to   a l ign   t he   i n s t rumen t   op t i ca l ly   w i th  a v i s i b l e  

l ight  source.   After  the  system i s  opt ica l ly   a l igned ,  a noise  source  can  be 

placed  behind a 30 cps  chopper a t  the   input  s l i t  and the  detected  s ignal   can 

be  peaked up  by  making f ine   ad jus tmen t s   i n   a l lmi r ro r s .  The beamspli t ter  i s  

aligned by a l t e rna te ly   ad jus t ing   t he  mirror t raverse  t o  loca t e   t he   cen t r a l  

maximum and ad jus t ing   the   beamspl i t te r   angles  until a rnaximum of de tec tor  

output i s  reached. The source  optics  can  then  be  added,  and  adjusted. 



B. LOW 'IEMPEFWCURE DE'IECTOR 

In order to extend  the  operating  frequency  of  the  spectrometer  to  sub- 
millimeter  wavelengths,  a  Texas  Instruments  liquid  helium  cooled  germanium 

bolometer  was  obtained.  Useful  experience  has  been  gained  in  the  process  of 

modifying  this  cryogenic  detector  for  submillimeter  operation  and  designing 

and  installing  necessary  bias  circuitry  to  couple  the  germanium  bolometer  to 

a  parametric mplifier. The  object  of  this  appendix  will  be  to  briefly  dis- 

cuss  some  of  the  problems  encountered  in  the use of  this  cryogenic  detector 
with  the  hope  that  others  may  profit  from  this  record  of  experience. 

To  establish  correct  parameters  (see  table I) for  the  detector  bias 
circuit,  the dc measurements  shown  in  figure 13 were  made  at 4.2 K. The 

corresponding  calculations  shown  in  table I1 show  that  the  selected  load  line 
gives  responsivity  of 2.2 x 10 volts/watt  and  static  resistance of 575 K at 
the  operating  point.  The  selected  Texas  Instruments  model RA-3A parametric 
amplifier  provides  a  nominal  gain  of 2500, 3 db  bandwidth 0.01 to 500 Hz, 
and  equivalent  input  noise  less  than 0.05 microvolts  rms (0.8 to 10 Hz) 
according  to  the  manufacturer. It was  found  necessary  to  mount  this  amplifier 
and  the  associated  circuitry  shown  in  figure 14 inside  a  Minibox  which  was  then 
bolted  to  the  side of the  cryoflask  in  order  to  avoid  excessive  pick-up  and 

microphonic  noise. 

0 

5 

A cross  section  of  the low temperature  detector  in  its  original  form is 

shown  in  figure 15 .  The 1.5 mm x 1.5 mm x 0,002 mm gallium-doped  germanium 
flake  is  mounted  by  small  wires  to  a  substrate  which is thermally  connected 
to the  liquid  helium  container.  The  irtran  window  shown  in  this  figure  has 
been  replaced  by  an  appropriate  waveguide  connection.  The  two  methods  con- 

sidered  for  making  this  waveguide  connection  to  the  germanium  element  without 

introducing  an  excessive  heat  leak  were  to  use  a  continuous-thin-walled 

stainless  steel  waveguide  or  to  use  electroplated  tapers  which  could  be 

mounted  with  a  gap  between  the  inner  and  outer  tapers  as  shown  in  figure 16. 
The  latter  method  was  selected as that  offering  the  lowest  transmission loss 

and  the  easiest  fabrication.  It  was  thought  that  the  tapers  could be mounted 
adjacent  at  room  temperature  and  pressure  and  that  thermal  contraction  of  the 

helium  flask  would  give  a  sufficient  gap  when  the  inner  taper  was  cooled  to 



TABLE I 

DC PARAMETERS OF CRYOGENIC BOLOMETER 

~~ ~- ". . .. - 
" ___ ~ - 

Q u a n t i t y   D e f i n i t i o n  . " ". . . . - Units 

E Voltage  across  the  bolometer  element  Volts 

I Current  through  the  bolometer  element Microamps 

z = " AE 
AI Dynamic resis tance Megohms 

R = E/I 
S = dE/dQ 

* S t a t i c   r e s i s t a n c e  

Responsivity 

Megohms 

Megavolt s /  
w a t t  

~ 

Z-R * S = dE/dQ = - 
- 

2E 

TABLE I1 

WORK SHEET  FOR DC BOLOMETER MEASUREMENTS* 

I 1.0 1.1 1.2 1.3 1.4 1 .5  1.6 
E 0.660 0.698 0 0730 0 758 0.780 0.801 0.820 

AE 0.070 0.060 0.050 0 .Ob3 0.040 

AI 0.2 0.2 0.2 0.2 0.2 
R 
Z 

0.609 

0.300 
0 9 583 
0.250 

0.557 

0.215 

0 e535 
0.200 

S 0.204 0.206 0.220 0.219 0.209 

* Temperature = 4.2 K 0 

- " .~ -~ . .~ 
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* RA9A LOW FREQUENCY PARAMETRIC AMPLIFIER 
TEXAS  INSTRUMENTS 
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Figure 14. Bolometer Bias and Parametric  Amplifier  Circuit, 
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Figure 1 5 .  Cross  Section of Cryogenic  Detector  Before  Modifications. 
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Figure 16 .  Waveguide Coupling  in   Cryogenic   Detector .  
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4.2' K. It was  found,  however,  that  the  problem  of  selecting  a  correct  gap 
distance  was  complicated  by  mechanical  distortion  of  the  container  caused 

by  evacuating  the  outer  jacket.  The  gap  distance was eventually  set  at 

approximately 0.010 inches,  at  room  temperature  and  pressure,  by  trial-and- 
error  methods. 

The  installation  of  waveguide  tapers  for  radiation  coupling  introduced 

a  problem  of  selecting  a  vacuum  window  for  the  outer  taper  and  introduced  an 
additional  heat  leak  problem. A drop  of  epoxy  was  initially  used  in  the 
throat  of  the  outer  horn  for  a  vacuum  seal;  the  epoxy,  however,  was  found  to 
give  prohibitively  high  losses so it  was  replaced  by  a  0.003g'thick  sheet  of 

mica  which  was  bonded  to  the  outer  edge  of  the  horn. In spite of precautions 
against  thermal  conduction,  maximum  hold  time  was  found  to  be  reduced  by 
about  a  factor  of  two  below  advertised  hold  time  of 14 hours after  the  copper 
tapers  were  installed.  Approximate  calculations,  made  by  considering  surface 
emissivity  of  the  tapers  to  be 0.5, indicate  that  radiative  heat  transfer 
between  the  tapers  is  about  the  same (27 mw)  as  the  summation  of  all  other 
significant  contributions  to  heat  transfer. Loss in  maximum  hold  time  might 
therefore  be  attributed  to  addition  of  the  necessary 0.5 inch  diameter  hole 
in  the  heat  shield  required  by  the  waveguide  tapers. 

An additional  vacuum  problem  was  encountered  when  attempts  were  made to 
evacuate  the  atmosphere  surrounding  the  detector  and  spectrometer so that 

comparative  water  vapor  absorption  measurements  could  be  made. It was  found 
that  evacuating  the  surrounding  atmosphere  to  a few torr  relieves  pressure 
which  is  necessary  to form a  seal  at  the  vacuum  valve,  thus  allowing  the 

cryogenic  vacuum  chamber  to  neutralize  with  the  surrounding  pressure.  This 
problem  was  tenporarily  circumvented  by  venting  the  vacuum  valve  to 
atmospheric  pressure. 
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